Mandy Lange-Geisler, „Hebbian learning approaches based on general inner products and distance measures in non-Euclidean spaces“, phd thesis, 2019.
A. Villmann, M. Lange-Geisler, T.Villmann, "About Semi-Inner Products for p-QR-Matrix Norms", Machine Learning Reports, MLR-03-2018 (2018).
A. Bohnsack, K. Domaschke, M. Kaden, M. Lange and T. Villmann, "Learning Matrix Quantization and Relevance Learning Based on Schatten-p-norms", Neurocomputing 192 (2016), pp. 104-114.
K. Domaschke, M. Kaden, M. Lange, T. Villmann, "Learning Matrix Quantization and Variants of Relevance Learning", in M. Verleysen, ed., Proc. Of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2015), pp. 13-18, Louvain-La-Neuve, Belgium (2015).
A. Bohnsack, K. Domaschke, M. Kaden, M. Lange and T. Villmann, "Mathematical Characterization of Sophisticated Variants for Relevance Learning in Learning Matrix Quantization Based on Schatten-p-norms", Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) (2015), pp. 403-414.
T. Villmann and M. Lange, "A comment on the functional LTSp -Measure Regarding the norm properties", TechReport, 2015.
M. Lange and M. Biehl and T. Villmann, "Non-Euclidean Principal Component Analysis by Hebbian Learning", Neurocomputing 147 (2015), pp. 107-119.
M. Lange, D. Nebel and T. Villmann, "Non-Euclidean Principal Component Analysis for Matrices by Hebbian Learning", in L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh and J.M. Zurada, ed., Artificial Intelligence and Soft Computing - Proc. the International Conference ICAISC vol. 8467, (Zakopane: Springer, 2014), pp. 77-88.
M. Lange, D. Zühlke, O. Holz, T. Villmann, "Applications of lp-norms and their Smooth Approximations for Gradient Based Learning Vector Quantization", in M. Verleysen, ed., Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014),pp. 271-276.
M. Lange and T. Villmann, “Partial mutual information for vector quantization”, In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, Berlin, 2014. Springer.
Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of 10th International Workshop WSOM 2014, Mittweida, Springer, Autoren: Villmann, T.; Schleif, F.-M.; Kaden, M. & Lange, M. (Eds.).
M. Kaden, M. Lange, D. Nebel, M. Riedel and T. Geweniger and T. Villmann, "Aspects in Classification Learning - Review of Recent Developments in Learning Vector Quantization", Foundations of Computing and Decision Sciences 39 (2014), pp. 79-105.
M. Biehl, M. Kästner, M. Lange and T. Villmann, "Non-Euclidean Principal Component Analysis and Oja’s Learning Rule - Theoretical Aspects", in P.A. Estevez and J.C. Principe and P. Zegers, ed., Advances in Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage de Chile vol. 198, (Berlin: Springer, 2013), pp. 23-34.
M. Lange, M. Biehl, T. Villmann, "Non-Euclidean Independent Component Analysis and Oja’s Learning", in M. Verleysen, ed., Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2013) (Louvain-La-Neuve, Belgium: i6doc.com, 2013), pp. 125-130.
M. Lange, T. Villmann, "Derivatives of lp-norms and their Approximations", Machine Learning Reports 7, MLR-04-2013 (2013), pp. 43-59.
T. Geweniger, L. Fischer, M. Kaden, M. Lange, and T. Villmann”, Clustering by fuzzy neural gas and evaluation of fuzzy clusters”, Computational Intelligence and Neuroscience, 2013.
M. Lange and T. Villmann, “Derivatives of lp-norms and their approximations”, Machine Learning Reports, 7(MLR-04-2013):43–59, 2013.
M. Lange, M. Kästner, and T. Villmann, “About analysis and robust classification of searchlight fMRI data using machine learning classifiers”, In Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA , pages 2026– 2033. IEEE Press, 2013.
L. Fischer, M. Lange, M. Kästner, and T. Villmann, “Accelerated vector quantization by pulsing neural gas”, Machine Learning Reports , 6(MLR-04-2012): 57–66, 2012.
T. Geweniger, M. Kästner, M. Lange, and T. Villmann,” Modified CONN-index for the evaluation of fuzzy clusterings” , In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2012), pages 465–470, Louvain-La-Neuve, Belgium, 2012.
M. Kästner, M. Lange, and T. Villmann, “Fuzzy supervised self-organizing map for semi-supervised vector quantization”, In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, and J.M. Zurada, editors, Artificial Intelligence and Soft Computing - Proc. the International Conference ICAISC, Zakopane , volume 1 of LNAI 7267, pages 256–265, Berlin Heidelberg, 2012. Springer.
M. Kästner, M. Strickert, D. Labudde, M. Lange, S. Haase, and T. Villmann”, Utilization of correlation measures in vector quantization for analysis of gene expression data - a review of recent developments”, Machine Learning Reports, 6(MLR-04-2012):5–22, 2012.
Villmann, T. Geweniger, M. Kästner, and M. Lange, ”Fuzzy neural gas for unsupervised vector quantization”, In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, and J.M. Zurada, editors, Artificial Intelligence and Soft Computing - Proc. the International Conference ICAISC, Zakopane, volume 1 of LNAI 7267, pages 350–358, Berlin Heidelberg, 2012 Springer.
T. Villmann, M. Kästner, and M. Lange,” Theory of patch clustering for variants of fuzzy c-means, fuzzy neural gas, and fuzzy self-organizing map”, Machine Learning Reports, 6(MLR-01-2012):80–90, 2012b.
T. Geweniger, M. Kästner, M. Lange, and T. Villmann, ”Derivation of a generalized Conn-index for fuzzy clustering validation”, Machine Learning Reports, 5(MLR- 07-2011):1–12, 2011.
T. Villmann, T. Geweniger, M. Kästner, and M. Lange, “Theory of fuzzy neural gas for unsupervised vector quantization”, Machine Learning Reports, 5(MLR-06- 2011):27–46, 2011.